Light-dependent expression of four cryptic archaeal circadian gene homologs

نویسندگان

  • Michael Maniscalco
  • Jennifer Nannen
  • Valerie Sodi
  • Gillian Silver
  • Phillip L. Lowrey
  • Kelly A. Bidle
چکیده

Circadian rhythms are important biological signals that have been found in almost all major groups of life from bacteria to man, yet it remains unclear if any members of the second major prokaryotic domain of life, the Archaea, also possess a biological clock. As an initial investigation of this question, we examined the regulation of four cyanobacterial-like circadian gene homologs present in the genome of the haloarchaeon Haloferax volcanii. These genes, designated cirA, cirB, cirC, and cirD, display similarity to the KaiC-family of cyanobacterial clock proteins, which act to regulate rhythmic gene expression and to control the timing of cell division. Quantitative RT-PCR analysis was used to examine the expression of each of the four cir genes in response to 12 h light/12 h dark cycles (LD 12:12) in H. volcanii during balanced growth. Our data reveal that there is an approximately two to sixteen-fold increase in cir gene expression when cells are shifted from light to constant darkness, and this pattern of gene expression oscillates with the light conditions in a rhythmic manner. Targeted single- and double-gene knockouts in the H. volcanii cir genes result in disruption of light-dependent, rhythmic gene expression, although it does not lead to any significant effect on growth under these conditions. Restoration of light-dependent, rhythmic gene expression was demonstrated by introducing, in trans, a wild-type copy of individual cir genes into knockout strains. These results are noteworthy as this is the first attempt to characterize the transcriptional expression and regulation of the ubiquitous kaiC homologs found among archaeal genomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa.

The circadian clock of Neurospora broadly regulates gene expression and is synchronized with the environment through molecular responses to changes in ambient light and temperature. It is generally understood that light entrainment of the clock depends on a functional circadian oscillator comprising the products of the wc-1 and wc-2 genes as well as those of the frq gene (the FRQ/WCC oscillator...

متن کامل

Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine.

A circadian clock is located in the retinal photoreceptors of the African clawed frog Xenopus laevis. These photoreceptor clocks are thought to govern a wide variety of output rhythms, including melatonin release and gene expression. Both light and dopamine phase shift the retinal clock in a phase-dependent manner. Two homologs of the Drosophila period gene have been cloned in Xenopus, and one ...

متن کامل

Conserved Function of Core Clock Proteins in the Gymnosperm Norway Spruce (Picea abies L. Karst)

From studies of the circadian clock in the plant model species Arabidopsis (Arabidopsis thaliana), a number of important properties and components have emerged. These include the genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB EXPRESSION 1 (TOC1 also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)) that via gene expression feedback loops participate in the...

متن کامل

Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses.

The Lemna genus is a group of monocotyledonous plants with tiny, floating bodies. Lemna gibba G3 and L. paucicostata 6746 were once intensively analyzed for physiological timing systems of photoperiodic flowering and circadian rhythms since they showed obligatory and sensitive photoperiodic responses of a long-day and a short-day plant, respectively. We attempted to approach the divergence of b...

متن کامل

The diversity and evolution of circadian clock proteins in fungi.

Circadian rhythms are endogenous cellular patterns that associate multiple physiological and molecular functions with time. The Neurospora circadian system contains at least three oscillators: the FRQ/WC-dependent circadian oscillator (FWO), whose core components are the FRQ, WC-1, WC-2, FRH, and FWD-1 proteins; the WC-dependent circadian oscillator (WC-FLO); and one or more FRQ/ WC-independent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014